XLUM-file Format Documentation

Sebastian Kreutzer, Steve Grehl, Michael Höhne

version: 1.0 [2023-03-20]

Contents

1	Motivation and principles	2
2	General description	2
3	Detailed description	3
	3.1 The <curve></curve> level	3
	3.2 The <record></record> level	6
	3.3 The <sequence></sequence> level	8
	3.4 The <sample></sample> level	9
	3.5 The <xlum></xlum> level	10
	3.6 General parameters (all nodes)	12
4	Special cases	12
	4.1 Pulsing data (optional)	12
5	Practical examples	13
6	Appendix	13
	6.1 Risø BIN/BINX to XLUM metadata argument matching	13
	6.2 Freiberg Instruments XSYG argument matching	15
	6.3 SUERC PSL argument matching	17

1 Motivation and principles

This document details the XLUM format, an XML based file format for long-term data preservation and exchange of luminescence data. The format is readable by humans and machines, and the data can be easily checked with any text reader on any major operating system. This design allows a platform-independent operation. The following documentation provides essential information on the file XLUM format and accounts for the needs for individual flexible data analysis, even with self-written software applications.

Three simple design principles underpin the format specification:

- Stored are data recorded over time or time derived instances,
- stored are data on a technical component level,
- data stored in a file are self-consistent.

2 General description

The XLUM-format is an XML derivative. The base data structure is a tree with five nodes types storing the data. Each level has its unique denotation.

The levels and a short introduction is given in the table below. A detailed description can be found in the following sections. Nodes represent each level in the structure. Only <curve> nodes contain physical quantities, such as luminescence data all other nodes are parent nodes of <curve> to structure the dataset and ship additional metadata.

The first level, xlum is a root node to enable storage of luminescence data in arbitrary files following the XML scheme. As a side effect this also allows custom file endings different from *.xlum.

Node name	Number of samples	Number of aliquots	Number of records	Number of data curves
<xlum></xlum>	inf	inf	inf	inf
<sample></sample>	1	inf	inf	inf
<sequence></sequence>	1	1	inf	inf
<record></record>	1	1	1	inf
<curve></curve>	1	1	1	1

```
Table 1: Node overview
```

A node has a name, attributes, and data stored in it. The data stored in the attributes describe the state of this level. The stored data in the node describes the process(es) assigned to the node. A minimal example is shown in the listing. The documentation provides an overview starting with the leaf node description and going up to the root from there. Further notes:

- The format version bases on XML version 1.0 (Fifth Edition)
- File encoding should always be UTF-8
- This specification lists only mandatory attributes. Additional, custom attributes are explicitly supported.
- Parser supporting the XLUM format must not crash when encountering non-specified node attributes. However, they may skip them.

```
<?rwnl version="1.0" encoding="utf-8"?>
<xlum>
<sample>
<sequence>
<record>
<curve>
1 2 ... n
</curve>
```

```
</record>
</sequence>
</sample>
</xlum>
```

3 Detailed description

3.1 The <curve/> level

The <curve/> level is the deepest node (leaf) and has no further sub-levels. A curve holds the predefined/simulated or measured output of one single technical component. For example, a typical thermoluminescence measurement may consist of one or many curves.

- 1. The one curve example: Time against temperature. In this case temperature is a processed quantity, because measurements happen over a time instant. However, for compatibility reasons, this would be allowed although it is not preferred.
- 2. The three curve example: (a) Time against temperature recorded by a thermocouple (temperature sensor), (b) time against photon counts recorded by a photomultiplier tube, (c) time against a predefined heating ramp.

In both cases, all mentioned <curve/> nodes belong to one parent <record/>. In case 1, the record contains one curve and three in case 2. Ideally, curves represent technical components and not processed quantities.

3.1.1 Value storage

Numerical values in the <curve/> node are stored white space separated. Only quantities detected by a detector/sensor are stored in this node. This includes simulated values. Figure 1 shows three types of (luminescence) detectors, distinguished by their capacity to record spatially resolved information. Regardless of the detector, recorded quantities are stored in the <curve/> node separated by white space. Example:

<curve>59.5167 109.5164 149.7003 109.5170 156.2654</curve>

Values in the node are real numbers (-1e-307 $\leq x \leq$ 1e+307; $x \in \mathbb{R}$). Scientific 'E'/'e' notations of numbers are explicitly allowed, example: 1e+2 for 100 or 1e-2 for 0.01. Decimal separator is a . (dot). Other separators, for instance to separate groups of numbers are not allowed to avoid decimal delimiter problems. Examples:

- 10000.00 -> OK
- 10 000.00 -> NOT OK
- 10,000.00 -> NOT OK

To reduce the size of the file, for instance for image data, the string in <curve/> can be stored using base64 encoding. It is up to the parser to decide whether the string was encoded or not! Encoding in other places (attributes) is not supported and must not be expected by the parser.

Please note that the XSD document does not specify binary encoding because it considers all values in *<curve/>* strings (which can represent encoded values).

For consistency reasons, the value in the node span an array with dimensions defined through the node attributes xValues, yValues and tValues (see Fig. 1).

- 1. The simplest form is a detector that records no spatial information. For instance, a photomultiplier tube only knows about count recorded over time. Alternatively, the detector can be any sensor, measuring, e.g., temperature, pressure or current.
- 2. A spectrometer (here a camera in front of a spectrograph) is another type of detector with spatial information, here wavelengths split by the spectrograph hitting different pixel areas of the detector.

XLUM count value storage principles for different detectors in <curve> node

Figure 1: The three cases for data storage depending on the detector. The black solid arrows indicate how the BY_{4} is constructed from the values stored in the 4 node.

3. The most complex from is a detector that records events (e.g., luminescence), spatially resolved. Such as a camera.

In the examples and Fig.1 the detectors detect luminescence. However, any type of sensor, electronic component recording information of relevance for the measurement of luminescence are suitable. Typical examples:

- Temperature sensor (thermocouple), recording the temperature of the heating element
- Photo diode, monitoring the optical power density at the sample position
- Resistor, measuring the current of a LED
- Pressure sensor, monitoring the atmosphere in the measurement chamber
- Inductive sensor, monitoring closing and opening of a shutter

3.1.2 Node attributes

Table 2: Specified curve attributes. Attributes in $\cite{tributes}$ are optional, hence $\tt NA$ is not allowed.

Identifier	Type	Allows NA?	Example	Information
component	string	yes	"EMI 9235QB15"	name of the technical component. NA allowed
startDate	dateTime	no	"2021-07-14T22:59:35.0Z"	ISO 8601-1:2019: YYYY-MM-DDThh:mm:ss[.mmm]Z recalculated to Zulu
curveType	string	no	"predefined"	time Values allowed are only "predefined" or "measured"
duration	number	no	"20.000"	Duration of the detection in seconds or a
offset	number	no	"10.000"	Before the detection starts in seconds or a
xValues	list unsignedInt	no	"1 2 3"	that that this parameter
yValues	list unsignedInt	no	"1 2 3"	is not used y-coordinate values of detector; 0 indicates that that this parameter
tValues	list double	no	"1. 2.0 3.0"	is not used time values in seconds or fractions of it. Values
vLabel	string	no	"Luminescence"	Measured physical
xLabel	string	yes	"pixel"	label of the x-coordinate values
yLabel	string	yes	"pixel"	label of the y-coordinate values
tLabel	string	no	"time"	label of t-values, usually 'time'

Identifier	Type	Allows NA?	Example	Information
vUnit	string	no	"cts"	label of the v-values, for luminescence usually photon counts
xUnit	string	yes	"nm"	SI unit or equivalent for x-values
yUnit	string	yes	"px"	SI unit or equivalent for y-values
tUnit	string	no	"s"	SI unit or equivalent for t-values
detectionWindow	string	yes	"375"	Centre wavelength if applicable. can be set to NA
filter	list (string)	yes	"Hoya U340; Delta BP 365/50EX"	Filter names separated by ;

3.1.3 Example

In order to define a suitable standard only a few attributes are required. A few of them are useful for every kind of component, others are only meaningful in combination. For instance, providing information on the detection window is not meaningful for a heating element.

```
{...}
  <curve component="heating element" startDate="2021-02-14T22:57:00.0Z"</pre>
    curveType="predefined" duaration="5"
    offset="0" xValues="NA" yValues="NA"
    tValues="1 2 3 4 5" xLabel="NA" yLabel="NA"
    tLabel="time" vLabel="temperature" xUnit="NA" yUnit="NA" vUnit="K" tUnit="s">
        293 303 313 323 333
  </curve>
  <curve component="thermo couple" startDate="2021-02-14T22:57:00.0Z"</pre>
    curveType="measured" duaration="5"
    offset="0" xValues="NA" yValues="NA" tValues="1 2 3 4 5" xLabel="NA" yLabel="NA"
    vLabel="temperature" tLabel="time" xUnit="NA" yUnit="NA" vUnit="K" tUnit="s">
        293 303 313 323 333
  </curve>
  <curve component="EMI 9123QB15" startDate="2021-02-14T22:57:00.0Z"</pre>
    curveType="measured" duaration="5" offset="0" xValues="NA" yValues="NA"
    tValues="1 2 3 4 5" xLabel="NA" yLabel="NA"
    vLabel="luminescence" tLabel="time" xUnit="NA" yUnit="NA" vUnit="cts"
    tUnit="s" detectionWindow="380 nm" filter="Hoya U340 + Delta 365/40">
        20 25 32 41 46
  </curve>
{...}
```

One curve is related to one technical device. To define a accurate time window, the parameters *duration* and *offset* should be used. These parameters are related to the start of the parent **<record/>** node.

3.2 The <record/> level

A **<record>** defines one process involving many components, hence **<record>** may contain $1 \le n \le Inf; n \in \mathbb{Z}$ **<curve>** nodes. A record can also be understood as one step in a measurement sequence, e.g., a TL measurement. All curves within the record should have been detected within the same time frame defined through the attributes **<startDate>** and the duration of the step.

3.2.1 Attributes

Identifier	Type	Allows NA?	Example	Information
recordType	string	no	"TL"	valid values according to the recordType table
sequenceStepNumber	unsignedInt	yes	5	index in the
sampleCondition	string	yes	dose	sequence valid values according to the table below

Table 3: Allowed attributes for **<record>** node.

The recordType names are not carved in stone, but should be chosen to best describe a record in one word or using an accepted abbreviation (e.g., OSL for optically stimulated luminescence). However, it is important to keep in mind that the recordType makes no claim on the technical components involved, but is solely set to ease the understanding of the record. The hard physical information is stored in the <curve> node.

Table 4: Valid recordTypes

recordType	Information
"bleaching"	any kind of bleaching
"irradiation"	irradiation with ionising source
"atmosphereExchange"	atmosphere exchange
"heating"	heating without signal detection
"spectrometer"	spectrometer
"camera"	camera, e.g. any kind of imaging other than spectrometry
"TL"	thermoluminescence measurement
"ITL"	isothermal luminescence
"IRSL"	infrared stimulated luminescence
"TM-OSL"	thermally modulated optically stimmulated luminescence
"RF"	radiofluorescence
"UV-RF"	radiofluorescence with detection in the UV wavelength range
"IR-RF"	radiofluorescence with detection in the infrared wavelength range
"IR-PL"	infrared photoluminescence
"OSL"	optically stimulated luminescence (wavelength unspecified)
"BSL"	blue-light optically stimulated luminescence
"GSL"	green-light optically stimulated luminescence
"VSL"	violet-light optically stimulated luminescence
"YSL"	yellow-light optically stimulated luminescence
"POSL"	pulsed optical stimulated luminescence
"pause"	pause
"custom"	any undefined or custom record type not listed above

Valid entries for for sampleConditions are given in the following table:

sampleCondition	Information
"Natural"	natural luminescence signal
"Natural+Dose"	natural luminescence signal with additive dose
"Bleach"	artificially depleted luminescence
"Bleach+Dose"	artificially depleted luminescence with an additive
	dose
"Nat.(Bleach)"	artificially bleached natural luminescence signal
"Nat.+Dose(Bleach)"	artificially bleached natural luminescence with added
	dose
"Dose"	artificially irradiated sample
"Background"	background

Table 5: Valid values for sampleConditions

Please note that the attribute sampleCondition is of informative nature, accounting for information stored in BIN/BINX-files. The field can be set to NA.

3.2.2 Example

The following examples consists of two records.

3.3 The <sequence/> level

A sequence describes multiple measurements sequentially used at **one** aliquot, for instance as cup/disc with multiple grains or a single grain. Hence, another aliquot from the **same** sample and the sample sequence needs to be wrapped in a new **<sequence/>** node. Naturally the information stored an that level can be very verbose, but are limited to

a few required attributes only. In the luminescence context a sequence can fit, e.g., a SAR protocol, but also a succession of protocols measured on one aliquot.

3.3.1 Attributes

Identifier	Type	Allows NA?	Example	Information
position	numeric	no	"42"	position of aliquot in the reader, can be 0 in case samples are changed manually, i.e. the equipment has only one single measurement position
name	string	yes	"SAR measurement"	name of the sequence
fileName	string	yes	"SAR_OSL.seq"	sequence file so far applicable
software	string	yes	"Sequence Editor 4.4"	software used to write the sequence if applicable
readerName	string	yes	"Risø OSL/TL"	name of the luminescence reader employed for the measurement
readerSN	string	yes	"234-23"	reader serial number
readerFW	string	yes	"reader OSL 12.3"	reader firmware version

Table 6: Mandatory attributes <sequence> node

3.3.2 Example

3.4 The <sample/> level

The sample constitutes the top level for one particular sample. The sample level may contain an infinite number of sequences measured for one sample.

3.4.1 Attributes

Table 7:	Mandatory	attributes	<sample></sample>	node
	•/		1	

Identifier	Data type	Allows NA?	Example	Information
name	number	yes	"LUM-21321"	unique sample identifier

Identifier	Data type	Allows NA?	Example	Information
mineral	string	yes	"quartz"	dominant mineral composition of the sample
latitude	numeric	yes	"52.4091392"	latitude in decimal degrees of the sample origin
longitude	numeric	yes	"-4.0702446"	longitude in decimal degrees of the sample origin
altitude	numeric	yes	"50"	altitude in m above see level
doi	anyURI	yes	"10.1016/j.radmeas.2017.02	. CORE DOI with further information on the sample, if applicable

3.4.2 Example

3.5 The <xlum/> level

The <xlum> is the format parent node and it can contain an infinite number of samples. Only this level allows to set a license for the distribution and usage of the data. All data within a particular <xlum> are considered distributed under the license. You have to create new instances of the <xlum> to set different licenses.

3.5.1 Attributes

Table 8:	Mandatory	attributes	of	<xlum></xlum>	node
----------	-----------	------------	----	---------------	------

Identifier	Type	Allows NA?	Example	Information
xmlns	namespace	no	predefined	Format specific
lang	string	no	predefined	namespace ISO 639-1 language code, must not be changed

Identifier	Type	Allows NA?	Example	Information
version	numeric	no	"1.0"	the xlum format version number relevant
flavour	string	no	"generic"	allows to specify a particular flavour of the format, for instance for particular equipment
author	list(string)	yes	"Max Planck; Marie Curie"	names of the author(s) of this dataset
license	string	yes	"CC BY 4.0"	license for the distribution of the dataset.
doi	anyURI	yes	"10.5281/zenodo.596252"	A digital document identifier referencing the dataset already archived in a data repository

Table 9: Allowed license types

license	License name	Reference	Comment
"CC BY"	Creative commons	https: //creativecommons.org	all flavours of the creative commons license scheme (e.g., CC BY-SA, CC BY-NC)
"CCO"	Creative Commons Public Domain Dedication	https: //creativecommons.org	you give up the copyright on your data and make it public domain. Please note this cannot be revoked!
"Copyright"	Copyright protected	-	Data are copyright protected and cannot be used or distributed without the creator's agreement.

3.5.2 Example

```
<curve ...>
    {...}
    </curve>
    {...}
    </record>
    </sequence>
    {...}
    </sample>
    {...}
    </rum>
{....}
```

3.6 General parameters (all nodes)

A few attributes are available on all node levels except the root node <xlum>. These attributes are mainly of technical nature to ease the sequential data storage during the measurement process (such as parentID).

Identifier	Data type	Allows NA?	Example	Information
state	string	yes	"recording"	defines the state of the node; only used by equipment manufactures
parentID	token	yes	"201007145551910"	uniquely identifying the parent node, the root node has the ID 0, this is usually not needed but may help to store data
comment	String	yes	"what a wonderful sample"	comment field

Table 10: Attributes valid in all nodes

4 Special cases

This section provides suggestions for attributes for particular types of measurements. These attributes are not compulsory, but if needed should be used for the sake of consistency.

Please note: these metadata are not required to store and analyse the data!

4.1 Pulsing data (optional)

In measurements with pulsed light stimulation, data processing usually requires summations of photon counts on the hardware level using so-called field-programmable gate arrays (FPGA). It is neither meaningful nor feasible to store single counts in separate curves for photon arrival times of $10^{-6} \le \tau \le 10^{-3}$ s. Hence, multiple detectors <curve/> data may be stored per <record/>, one for each (x) pulse(-s). In those cases, the <record/> node contains additional metadata that may help understand the data and pre-processing by the hardware level better. All attributes are optional.

Identifier	Data type	Example	Information
onTime	numeric	"1E-01"	on time of stimulation per pulse, [s]
offTime	numeric	"1E-01"	on time of stimulation per pulse, [s]
nPulses	numeric	"10"	number of stimulation pulses total
summations	numeric	"2"	how many consecutive pulse records are summed (e.g. 10 pulses, 2 summations -> 5 records)
channels PerPulse	numeric	"1000"	number of channels that are recorded in one curve
countsNormalised	numeric	"1"	if not 0, counts per channel are normalized to counts per second (helpful with uneven distributed channel times)

Table 11: Addition	onal metadata	<record></record>	node p	ulsing data
--------------------	---------------	-------------------	--------	-------------

Also the curves contain additional metadata

Table 12: Additional metadata <curve> node pulsing data

Identifier	Data type	Example	Information
pulseID	numeric	"1"	current pulse number

5 Practical examples

This section contains detailed examples for particular curve types in order to provide usable examples for the data format.

6 Appendix

6.1 Risø BIN/BINX to XLUM metadata argument matching

Risø BIN/BINX files consist of a metadata header block and a data block. Some of the metadata serves the sole purpose of describing the structure of the data block, others return the specific equipment status but are non-relevant for the data analysis.

Most BIN/BINX metadata is covered by the XLUM format by design and hence finds their expression implicitly. The following argument list contains **all** possible arguments in BIN/BINX files, however, not all BIN/BINX file versions support all arguments. Covered here are BIN/BINX files between versions 03 to 08.

#	BIN/BINX argument	Expression in XLUM	Remarks
01	VERSION	NONE	number of BIN/BINX file version
02	PREVIOUS	implicit	covered through XLUM structure
03	NPOINTS	implicit	can be calculated from data
04	RECTYPE	NONE	file format internal metadata
05	RUN	implicit	structure through order in <sequence></sequence>
06	SET	implicit	structure through order in <sequence></sequence>
07	POSITION	position	in <sequence></sequence> node
08	GRAIN	implicit	a grain is considered a sample
09	GRAINNUMBER	implicit	a grain is considered a sample
10	CURVENO	implicit	through structure
11	XCOORD	NONE	considered non-relevant
12	YCOORD	NONE	considered non-relevant
13	SAMPLE	name	in <sample></sample> node
14	COMMENT	comment	allowed argument in every node
15	SYSTEMID	readerSN	in <sequence></sequence> node
16	FNAME	fileName	in <sequence></sequence> node
17	USEB	author	in < x lum/> node
18	TIME	startDate	in $<$ urve/> node (ISO 8601-1.2019)
19	DATE	startDate	in $< urve /> node (ISO 8601-1:2019)$
20	DTYPE	sampleCondition	in $\langle curve \rangle$ node
21	BL TIME	implicit	can be expressed as <curve></curve>
21	BI UNIT	implicit	expressed in <curve></curve> metadata
23	NORM1	implicit	should be part of $\langle curve / \rangle$ representation
$\frac{20}{24}$	NORM2	implicit	should be part of <i>curve</i> /> representation
24 25	NORM3	implicit	should be part of <i>curve</i> /> representation
$\frac{20}{26}$	BC	implicit	can be expressed as <curve></curve>
$\frac{20}{27}$	SHIFT	implicit	part of curve information
21		NONE	non-relevant internal metadata
20	ITVDF	recordType	in <record></record> node
20	LITTE	implicit	can be added in commont fields
30 31		implicit	can be avaressed as course />
32	LI OWER	implicit	can be expressed as <curve></curve>
33		implicit	not needed part of <curve></curve>
34	HICH	implicit	not needed, part of <curve></curve>
25	DATE	implicit	not needed, part of <curve></curve>
36		implicit	avpressed as courses/>
30 37	MEASTEND	implicit	expressed as <curve></curve>
30 30	MEASIEMF	implicit	expressed as <curve></curve>
30	AN TIME	implicit	expressed as <curve></curve>
39 40		implicit	expressed as <curve></curve>
40 41		implicit	expressed as <curve></curve>
41	TOLON	implicit	expressed as <curve></curve>
42		implicit	expressed as <curve></curve>
40	IRC_IIME	NONE	expressed as <curve></curve>
44 45	INTT		in <u>communal</u> pode
40 46	IRR_UNII		ni curve/ > node
40	IKK_DUSEKAIE	NONE	enther as curve or comment
41	IKK_DUSEKAILEKK		only as comment possible
4ð	IIMESINCEIKK		calculated from time stamps
49 50	I IMETICK		derived from online and offTIME
5U F 1	UNIIME	ONIIME	In <record></record> node
51	UFFIIME	OIIIIME	III <record></record> node
52	STIMEPERIOD	implicit	through nPulses in <record></record> node

#	BIN/BINX argument	Expression in XLUM	Remarks
53	GATE_ENABLED	NONE	considered non-relevant
54	ENABLE_FLAGS	NONE	considered non-relevant
55	GATE_START	NONE	considered non-relevant
56	GATE_STOP	NONE	considered non-relevant
57	PTENABLED	NONE	considered non-relevant
58	DTENABLED	NONE	considered non-relevant
59	DEADTIME	NONE	considered non-relevant
60	MAXLPOWER	implicit	represented as <curve></curve>
61	XRF_ACQTIME	implicit	represented as <curve></curve>
62	XRF_HV	implicit	represented as <curve></curve>
63	XRF_CURR	implicit	represented as <curve></curve>
64	XRF_DEADTIMEEF	NONE	possible as comment
65	DETECTOR_ID	component	in <curve></curve> node
66	LOWERFILTER_ID	filter	in <curve></curve> node
67	LOWERFILTER_ID	filter	in <curve></curve> node
68	ENOISEFACTOR	NONE	usage unknown
69	MARKPOS_X1	implicit	can be expressed as $<\!\!\text{curve}/\!\!>$ or comment
70	MARKPOS_Y1	implicit	can be expressed as $<\!\!\text{curve}/\!\!>$ or comment
71	MARKPOS_X2	implicit	can be expressed as $<\!\!\mathrm{curve}/\!\!>$ or comment
72	MARKPOS_Y2	implicit	can be expressed as $<\!\!\mathrm{curve}/\!\!>$ or comment
73	MARKPOS_X3	implicit	can be expressed as $<\!\!\mathrm{curve}/\!\!>$ or comment
74	MARKPOS_Y3	implicit	can be expressed as $<\!\!\mathrm{curve}/\!\!>\mathrm{or\ comment}$
75	EXTR_START	NONE	usage unknown
76	EXTR_END	NONE	usage unknown
77	SEQUENCE	name	in <sequence></sequence> node

Note: metadata tagged with "considered non-relevant" or "usage unknown" indicate that they are not considered (yet) as relevant enough for long-term data preservation and are hence not to be included as a compulsory argument in the XLUM format definition. However, they **can** still be stored in the XLUM format regardless.

6.2 Freiberg Instruments XSYG argument matching

The XYSG file format by Freiberg Instruments is already an XML-based file format . It can be somewhat considered the predecessor of the XLUM format. The structure was developed in February 2013 but never formally published, and attributes are not necessarily followed. The main differences are:

- The XSYG file format consists of only four nodes instead of five. Parent node xlum exists only for the XLUM format
- Nodes start with a capital letter (e.g., <Sample>, instead of <sample> in XLUM)
- The individual curves values are stored as a pair-list with values separated by a semicolon ;, in the <Curve> node, i.e., x0 , y0 ; x1 , y1 ; x2 , y2 ; x3 , y3. XLUM uses attributes instead, and values are stored separately through white space
- For spectrometer data, the XSYG format defines an alternative storage format of values in the <Curve> node of form 1.0 , [554|555|559|553|556|550| {...}. Contrary, XLUM maintains a consistent storage format.
- The chosen date format was not ISO conform yyyyMMddhhmmss instead of ISO 8601-1:2019: YYYY-MM-DDThh:mm:ss[.mmm]Z recalculated to Zulu time.

In the following, the XYSG to XLUM argument matching is listed node-wise.

6.2.1 <Curve/> vs <curve/>

#	XSYG attribute	Expression in XLUM	Remarks
01	startDate	startDate	note the format difference
02	duration	duration	
03	curveType	duration	
04	stimulator	component	
05	detector	component	
06	curveDscripter	xLabel, yLabel, tLabel,	needs to be split and matched separately
		vLabel, xUnit, yUnit,	
		tUnit, vUnit	
07	offset	implicit	can be encode through the tValues
08	detectionWindow	detectionWindow	
09	filterIDs	NONE	purely manufacture related ID
10	filterNames	filter	filter names separated by ;

6.2.2 <Record/> vs <record/>

#	XSYG attribute	Expression in XLUM	Remarks
01	startDate	startDate	note the format difference
02	endDate	implicit	can be calculated from other attributes
03	recordType	recordType	
04	name	NONE	encoded through recordType + comment
05	$\verb+sequenceStepNumber+$	sequenceStepNumber	
06	metaIrrType	implicit	encode through component in <curve></curve>
07	metaIrrDuration	implicit	through <curve></curve> node
08	sampleCondition	sampleCondition	

6.2.3 <Sequence/> vs <sequence/>

#	XSYG attribute	Expression in XLUM	Remarks
01	position	position	
02	creationDate	implicit	through startDate of <record></record> and <curve></curve> $\!\!$
03	name	name	
04	protocol	implicit	in name
05	mineral	NONE	value to be entered in <sample></sample> node

6.2.4 <Sample/> vs <sample/>

#	XSYG attribute	Expression in XLUM	Remarks
01	name	name	
02	user	NONE	Author can be entered in <xlum></xlum> node
03	startDate	implicit	through values in other <curve></curve> and <record></record> nodes
04	sampleCarrier	NONE	entry in general attribute comment possible
05	lexsygID	implicit	entry in attributes in <sequence></sequence> node attributes
06	lexStudioVersion	implicit	entry in attributes in <sequence></sequence> node attributes
07	firmwareVersion	implicit	entry in attributes in <sequence></sequence> node attributes

#	XSYG attribute	Expression in XLUM	Remarks
08	OS	NONE	however, entry in comment attribute possible

6.2.5 General attributes

#	XSYG attribute	Expression in XLUM	Remarks
01	state	state	
02	partentID	partentID	
03	comment	comment	

6.3 SUERC PSL argument matching

PSL files are produced by portable luminescence readers produced by the Scottish Universities Environmental Research Centre (SUERC). PSL files are loosely structured ASCII files without format descriptions.

Measured values are stored in essentially five columns (three columns, but total count and count values per cycle include uncertainties), example:

Time (s)	Total Count	Counts per Cycle
1	0 +/- 4	0 +/- 4
2	-2 +/- 6	-2 +/- 4
3	12 +/- 8	14 +/- 5

These values can be represented in the XLUM format using <curve/> nodes, one <curve/> for the counts per cycle and another for the uncertainties. This solution is safer than adding uncertainties as attributes and more consistent because the uncertainties must have been estimated using a component.

Columns under "Total Count" represent cumulative data that can be recalculated from the values under "Counts per Cycle" should not be stored explicitly in XLUM.

Additionally, PSL provides arguments that can be extracted from those files. The matching listed below is non-exhaustive and represents the current state-of-knowledge about the PSL format.

#	PSL metadata	Expression in XLUM	Remarks
01	Run Name	implicit	through comment
02	Sample no	name	through name in <sample></sample> node
03	Sequence name	name	through name in <sequence></sequence> node
04	Filename	fileName	in <sequence></sequence> node
05	Dark Count	implicit	as <curve></curve> node
06	Light Count	implicit	as <curve></curve> node
07	Dark Count	NONE	this is a logical attribute, which can part of
	Correction		<pre>comment if needed in the <curve></curve> node</pre>
08	Offset Subract	NONE	this can be part of comment in <curve></curve> node
09	Datafile Path	NONE	not considered relevant
10	Summary Path	NONE	not considered relevant
11	Run Sequence	implicit	through name in <sequence></sequence> node
12	Timestamp	startDate	in <curve></curve> node, please note the different
			format
13	Measurement	recordType	in <record></record> node
14	Stim	recordType	in <record></record> node
15	On/Off(us)	onTime, offTime	in <curve></curve> node
16	Cycle(ms), No	nPulses	in <curve></curve> node

Please note: as for the data formats above, in principle, all arguments can be carried over directly. However, for the sake of consistency, the matching should be applied.