This function calculates a number of descriptive statistics for estimates with a given standard error (SE), most fundamentally using error-weighted approaches.
Arguments
- data
data.frame or RLum.Results object (required): for data.frame two columns: De (
data[,1]
) and De error (data[,2]
). To plot several data sets in one plot the data sets must be provided aslist
, e.g.list(data.1, data.2)
.- weight.calc
character: type of weight calculation. One out of
"reciprocal"
(weight is 1/error),"square"
(weight is 1/error^2). Default is"square"
.- digits
integer (with default): round numbers to the specified digits. If digits is set to
NULL
nothing is rounded.- n.MCM
numeric (with default): number of samples drawn for Monte Carlo-based statistics.
NULL
(the default) disables MC runs.- na.rm
logical (with default): indicating whether
NA
values should be stripped before the computation proceeds.
Details
The option to use Monte Carlo Methods (n.MCM
) allows calculating
all descriptive statistics based on random values. The distribution of these
random values is based on the Normal distribution with De
values as
means and De_error
values as one standard deviation. Increasing the
number of MCM-samples linearly increases computation time. On a Lenovo X230
machine evaluation of 25 Aliquots with n.MCM = 1000 takes 0.01 s, with
n = 100000, ca. 1.65 s. It might be useful to work with logarithms of these
values. See Dietze et al. (2016, Quaternary Geochronology) and the function
plot_AbanicoPlot for details.
How to cite
Dietze, M., 2024. calc_Statistics(): Function to calculate statistic measures. Function version 0.1.7. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., 2024. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.26. https://r-lum.github.io/Luminescence/
Examples
## load example data
data(ExampleData.DeValues, envir = environment())
## show a rough plot of the data to illustrate the non-normal distribution
plot_KDE(ExampleData.DeValues$BT998)
## calculate statistics and show output
str(calc_Statistics(ExampleData.DeValues$BT998))
#> List of 3
#> $ weighted :List of 9
#> ..$ n : int 25
#> ..$ mean : num 2896
#> ..$ median : num 2884
#> ..$ sd.abs : num 240
#> ..$ sd.rel : num 8.29
#> ..$ se.abs : num 48
#> ..$ se.rel : num 1.66
#> ..$ skewness: num 1.34
#> ..$ kurtosis: num 4.39
#> $ unweighted:List of 9
#> ..$ n : int 25
#> ..$ mean : num 2951
#> ..$ median : num 2884
#> ..$ sd.abs : num 282
#> ..$ sd.rel : num 9.54
#> ..$ se.abs : num 56.3
#> ..$ se.rel : num 1.91
#> ..$ skewness: num 1.34
#> ..$ kurtosis: num 4.39
#> $ MCM :List of 9
#> ..$ n : int 25
#> ..$ mean : num 2951
#> ..$ median : num 2884
#> ..$ sd.abs : num 282
#> ..$ sd.rel : num 9.54
#> ..$ se.abs : num 56.3
#> ..$ se.rel : num 1.91
#> ..$ skewness: num 1.34
#> ..$ kurtosis: num 4.39
if (FALSE) { # \dontrun{
## now the same for 10000 normal distributed random numbers with equal errors
x <- as.data.frame(cbind(rnorm(n = 10^5, mean = 0, sd = 1),
rep(0.001, 10^5)))
## note the congruent results for weighted and unweighted measures
str(calc_Statistics(x))
} # }