The function provides a generalised access point for specific RLum objects. Depending on the input object, the corresponding function will be selected. Allowed arguments can be found in the documentations of the corresponding RLum class.
Usage
get_RLum(object, ...)
# S4 method for class 'list'
get_RLum(object, class = NULL, null.rm = FALSE, ...)
# S4 method for class 'NULL'
get_RLum(object, ...)
Arguments
- object
RLum (required): S4 object of class
RLum
or an object of type list containing only objects of type RLum- ...
further arguments passed to the specific class method.
- class
character (optional): allows to define the class that gets selected if applied to a list, e.g., if a list consists of different type of RLum objects, this arguments allows to make selection. If nothing is provided, all RLum-objects are treated.
- null.rm
logical (with default): remove empty and
NULL
objects.
Functions
get_RLum(list)
: Returns a list of RLum objects that had been passed to get_RLumget_RLum(`NULL`)
: ReturnsNULL
.
Author
Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany) , RLum Developer Team
How to cite
Kreutzer, S., 2025. get_RLum(): General accessor function for RLum S4 class objects. Function version 0.3.3. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., Steinbuch, L., Boer, A.d., 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.0.1. https://r-lum.github.io/Luminescence/
Examples
## Example based using data and from the calc_CentralDose() function
## load example data
data(ExampleData.DeValues, envir = environment())
## apply the central dose model 1st time
temp1 <- calc_CentralDose(ExampleData.DeValues$CA1)
#>
#> [calc_CentralDose]
#>
#> ----------- meta data ----------------
#> n: 62
#> log: TRUE
#> ----------- dose estimate ------------
#> abs. central dose: 65.71
#> abs. SE: 3.05
#> rel. SE [%]: 4.65
#> ----------- overdispersion -----------
#> abs. OD: 22.79
#> abs. SE: 2.27
#> OD [%]: 34.69
#> SE [%]: 3.46
#> -------------------------------------
#>
## get results and store them in a new object
temp.get <- get_RLum(object = temp1)