Fit a dose-response curve for luminescence data (Lx/Tx against dose)
Source:R/fit_DoseResponseCurve.R
fit_DoseResponseCurve.Rd
A dose-response curve is produced for luminescence measurements using a regenerative or additive protocol. The function supports interpolation and extrapolation to calculate the equivalent dose.
Usage
fit_DoseResponseCurve(
object,
mode = "interpolation",
fit.method = "EXP",
fit.force_through_origin = FALSE,
fit.weights = TRUE,
fit.includingRepeatedRegPoints = TRUE,
fit.NumberRegPoints = NULL,
fit.NumberRegPointsReal = NULL,
fit.bounds = TRUE,
n.MC = 100,
txtProgressBar = TRUE,
verbose = TRUE,
...
)
Arguments
- object
data.frame or a list of such objects (required): data frame with columns for
Dose
,LxTx
,LxTx.Error
andTnTx
. The column for the test dose response is optional, but requires'TnTx'
as column name if used. For exponential fits at least three dose points (including the natural) should be provided. Ifobject
is a list, the function is called on each of its elements.- mode
character (with default): selects calculation mode of the function.
"interpolation"
(default) calculates the De by interpolation,"extrapolation"
calculates the equivalent dose by extrapolation (useful for MAAD measurements) and"alternate"
calculates no equivalent dose and just fits the data points.
Please note that for option
"interpolation"
the first point is considered as natural dose- fit.method
character (with default): function used for fitting. Possible options are:
LIN
,QDR
,EXP
,EXP OR LIN
,EXP+LIN
,EXP+EXP
,GOK
,LambertW
See details.
- fit.force_through_origin
logical (with default) allow to force the fitted function through the origin. For
method = "EXP+EXP"
the function will be fixed through the origin in either case, so this option will have no effect.- fit.weights
logical (with default): option whether the fitting is done with or without weights. See details.
- fit.includingRepeatedRegPoints
logical (with default): includes repeated points for fitting (
TRUE
/FALSE
).- fit.NumberRegPoints
integer (optional): set number of regeneration points manually. By default the number of all (!) regeneration points is used automatically.
- fit.NumberRegPointsReal
integer (optional): if the number of regeneration points is provided manually, the value of the real, regeneration points = all points (repeated points) including reg 0, has to be inserted.
- fit.bounds
logical (with default): set lower fit bounds for all fitting parameters to 0. Limited for the use with the fit methods
EXP
,EXP+LIN
,EXP OR LIN
,GOK
,LambertW
Argument to be inserted for experimental application only!- n.MC
integer (with default): number of Monte Carlo simulations for error estimation, see details.
- txtProgressBar
logical (with default): enable/disable the progress bar. If
verbose = FALSE
also notxtProgressBar
is shown.- verbose
logical (with default): enable/disable output to the terminal.
- ...
Further arguments to be passed (currently ignored).
Value
An RLum.Results
object is returned containing the slot data
with the
following elements:
Overview elements
DATA.OBJECT | TYPE | DESCRIPTION |
..$De : | data.frame | Table with De values |
..$De.MC : | numeric | Table with De values from MC runs |
..$Fit : | nls or lm | object from the fitting for EXP , EXP+LIN and EXP+EXP .
In case of a resulting linear fit when using LIN , QDR or EXP OR LIN |
..Fit.Args : | list | Arguments to the function |
..$Formula : | expression | Fitting formula as R expression |
..$call : | call | The original function call |
If object
is a list, then the function returns a list of RLum.Results
objects as defined above.
Details - DATA.OBJECT$De
This object is a data.frame with the following columns
De | numeric | equivalent dose |
De.Error | numeric | standard error the equivalent dose |
D01 | numeric | D-naught value, curvature parameter of the exponential |
D01.ERROR | numeric | standard error of the D-naught value |
D02 | numeric | 2nd D-naught value, only for EXP+EXP |
D02.ERROR | numeric | standard error for 2nd D-naught; only for EXP+EXP |
Dc | numeric | value indicating saturation level; only for LambertW |
n_N | numeric | saturation level of dose-response curve derived via integration from the used function; it compares the full integral of the curves (N ) to the integral until De (n ) (e.g., Guralnik et al., 2015) |
De.MC | numeric | equivalent dose derived by Monte-Carlo simulation; ideally identical to De |
De.plot | numeric | equivalent dose use for plotting |
Fig | character | applied fit function |
HPDI68_L | numeric | highest probability density of approximated equivalent dose probability curve representing the lower boundary of 68% probability |
HPDI68_U | numeric | same as HPDI68_L for the upper bound |
HPDI95_L | numeric | same as HPDI68_L but for 95% probability |
HPDI95_U | numeric | same as HPDI95_L but for the upper bound |
Details
Fitting methods
For all options (except for the LIN
, QDR
and the EXP OR LIN
),
the minpack.lm::nlsLM function with the LM
(Levenberg-Marquardt algorithm)
algorithm is used. Note: For historical reasons for the Monte Carlo
simulations partly the function nls using the port
algorithm.
The solution is found by transforming the function or using stats::uniroot.
LIN
: fits a linear function to the data using
lm: $$y = mx + n$$
QDR
: fits a linear function with a quadratic term to the data using
lm: $$y = a + bx + cx^2$$
EXP
: tries to fit a function of the form
$$y = a(1 - exp(-\frac{(x+c)}{b}))$$
Parameters b and c are approximated by a linear fit using lm. Note: b = D0
EXP OR LIN
: works for some cases where an EXP
fit fails.
If the EXP
fit fails, a LIN
fit is done instead.
EXP+LIN
: tries to fit an exponential plus linear function of the
form:
$$y = a(1-exp(-\frac{x+c}{b}) + (gx))$$
The \(D_e\) is calculated by iteration.
Note: In the context of luminescence dating, this function has no physical meaning. Therefore, no D0 value is returned.
EXP+EXP
: tries to fit a double exponential function of the form
$$y = (a_1 (1-exp(-\frac{x}{b_1}))) + (a_2 (1 - exp(-\frac{x}{b_2})))$$
This fitting procedure is not robust against wrong start parameters and
should be further improved.
GOK
: tries to fit the general-order kinetics function after
Guralnik et al. (2015) of the form of
$$y = a (d - (1 + (\frac{1}{b}) x c)^{(-1/c)})$$
where c > 0 is a kinetic order modifier
(not to be confused with c in EXP
or EXP+LIN
!).
LambertW
: tries to fit a dose-response curve based on the Lambert W function
according to Pagonis et al. (2020). The function has the form
$$y ~ (1 + (W((R - 1) * exp(R - 1 - ((x + D_{int}) / D_{c}))) / (1 - R))) * N$$
with \(W\) the Lambert W function, calculated using the package lamW::lambertW0,
\(R\) the dimensionless retrapping ratio, \(N\) the total concentration
of trappings states in cm^-3 and \(D_{c} = N/R\) a constant. \(D_{int}\) is
the offset on the x-axis. Please note that finding the root in mode = "extrapolation"
is a non-easy task due to the shape of the function and the results might be
unexpected.
Fit weighting
If the option fit.weights = TRUE
is chosen, weights are calculated using
provided signal errors (Lx/Tx error):
$$fit.weights = \frac{\frac{1}{error}}{\Sigma{\frac{1}{error}}}$$
Error estimation using Monte Carlo simulation
Error estimation is done using a parametric bootstrapping approach. A set of
Lx/Tx
values is constructed by randomly drawing curve data sampled from normal
distributions. The normal distribution is defined by the input values (mean = value
, sd = value.error
). Then, a dose-response curve fit is attempted for each
dataset resulting in a new distribution of single De
values. The standard
deviation of this distribution becomes then the error of the De
. With increasing
iterations, the error value becomes more stable. However, naturally the error
will not decrease with more MC runs.
Alternatively, the function returns highest probability density interval estimates as output, users may find more useful under certain circumstances.
Note: It may take some calculation time with increasing MC runs,
especially for the composed functions (EXP+LIN
and EXP+EXP
).
Each error estimation is done with the function of the chosen fitting method.
How to cite
Kreutzer, S., Dietze, M., Colombo, M., 2025. fit_DoseResponseCurve(): Fit a dose-response curve for luminescence data (Lx/Tx against dose). Function version 1.2.1. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., Steinbuch, L., Boer, A.d., 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.0.1. https://r-lum.github.io/Luminescence/
References
Berger, G.W., Huntley, D.J., 1989. Test data for exponential fits. Ancient TL 7, 43-46.
Guralnik, B., Li, B., Jain, M., Chen, R., Paris, R.B., Murray, A.S., Li, S.-H., Pagonis, P., Herman, F., 2015. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiation Measurements 81, 224-231.
Pagonis, V., Kitis, G., Chen, R., 2020. A new analytical equation for the dose response of dosimetric materials, based on the Lambert W function. Journal of Luminescence 225, 117333. doi:10.1016/j.jlumin.2020.117333
Author
Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany)
Michael Dietze, GFZ Potsdam (Germany)
Marco Colombo, Institute of Geography, Heidelberg University (Germany)
, RLum Developer Team
Examples
##(1) fit growth curve for a dummy data.set and show De value
data(ExampleData.LxTxData, envir = environment())
temp <- fit_DoseResponseCurve(LxTxData)
#> [fit_DoseResponseCurve()] Fit: EXP (interpolation) | De = 1737.88 | D01 = 1766.07
get_RLum(temp)
#> De De.Error D01 D01.ERROR D02 D02.ERROR Dc n_N De.MC
#> 1 1737.881 61.81878 1766.074 91.29813 NA NA NA 0.5271352 1745.224
#> De.plot Fit HPDI68_L HPDI68_U HPDI95_L HPDI95_U
#> 1 1737.881 EXP 1682.884 1815.013 1615.168 1868.69
##(1b) to access the fitting value try
get_RLum(temp, data.object = "Fit")
#> Nonlinear regression model
#> model: y ~ a * (1 - exp(-(x + c)/b))
#> data: data
#> a b c
#> 6.806 1766.074 5.051
#> weighted residual sum-of-squares: 0.0004268
#>
#> Number of iterations to convergence: 4
#> Achieved convergence tolerance: 1.49e-08
##(2) fit using the 'extrapolation' mode
LxTxData[1,2:3] <- c(0.5, 0.001)
print(fit_DoseResponseCurve(LxTxData, mode = "extrapolation"))
#> [fit_DoseResponseCurve()] Fit: EXP (extrapolation) | De = 109.74 | D01 = 2624.06
#>
#> [RLum.Results-class]
#> originator: fit_DoseResponseCurve()
#> data: 5
#> .. $De : data.frame
#> .. $De.MC : numeric
#> .. $Fit : nls
#> .. $Fit.Args : list
#> .. $Formula : expression
#> additional info elements: 1
##(3) fit using the 'alternate' mode
LxTxData[1,2:3] <- c(0.5, 0.001)
print(fit_DoseResponseCurve(LxTxData, mode = "alternate"))
#>
#> [RLum.Results-class]
#> originator: fit_DoseResponseCurve()
#> data: 5
#> .. $De : data.frame
#> .. $De.MC : logical
#> .. $Fit : nls
#> .. $Fit.Args : list
#> .. $Formula : expression
#> additional info elements: 1
##(4) import and fit test data set by Berger & Huntley 1989
QNL84_2_unbleached <-
read.table(system.file("extdata/QNL84_2_unbleached.txt", package = "Luminescence"))
results <- fit_DoseResponseCurve(
QNL84_2_unbleached,
mode = "extrapolation",
verbose = FALSE)
#> Warning: [fit_DoseResponseCurve()] Error column invalid or 0, 'fit.weights' ignored
#calculate confidence interval for the parameters
#as alternative error estimation
confint(results$Fit, level = 0.68)
#> Waiting for profiling to be done...
#> 16% 84%
#> a 140543.3024 146731.8471
#> b 374.0861 425.5679
#> c 116.3499 133.3474
if (FALSE) { # \dontrun{
QNL84_2_bleached <-
read.table(system.file("extdata/QNL84_2_bleached.txt", package = "Luminescence"))
STRB87_1_unbleached <-
read.table(system.file("extdata/STRB87_1_unbleached.txt", package = "Luminescence"))
STRB87_1_bleached <-
read.table(system.file("extdata/STRB87_1_bleached.txt", package = "Luminescence"))
print(
fit_DoseResponseCurve(
QNL84_2_bleached,
mode = "alternate",
verbose = FALSE)$Fit)
print(
fit_DoseResponseCurve(
STRB87_1_unbleached,
mode = "alternate",
verbose = FALSE)$Fit)
print(
fit_DoseResponseCurve(
STRB87_1_bleached,
mode = "alternate",
verbose = FALSE)$Fit)
} # }