The function determines weighted nonlinear least-squares estimates of the
component parameters of an LM-OSL curve (Bulur 1996) for a given number of
components and returns various component parameters. The fitting procedure
uses the function nls with the port
algorithm.
Usage
fit_LMCurve(
values,
values.bg,
n.components = 3,
start_values,
input.dataType = "LM",
fit.method = "port",
sample_code = "",
sample_ID = "",
LED.power = 36,
LED.wavelength = 470,
fit.trace = FALSE,
fit.advanced = FALSE,
fit.calcError = FALSE,
bg.subtraction = "polynomial",
verbose = TRUE,
plot = TRUE,
plot.BG = FALSE,
...
)
Arguments
- values
RLum.Data.Curve or data.frame (required): x,y data of measured values (time and counts). See examples.
- values.bg
RLum.Data.Curve or data.frame (optional): x,y data of measured values (time and counts) for background subtraction.
- n.components
integer (with default): fixed number of components that are to be recognised during fitting (min = 1, max = 7).
- start_values
data.frame (optional): start parameters for
lm
andxm
data for the fit. If no start values are given, an automatic start value estimation is attempted (see details).- input.dataType
character (with default): alter the plot output depending on the input data:
"LM"
or"pLM"
(pseudo-LM). See: CW2pLM- fit.method
character (with default): select fit method, allowed values:
'port'
and'LM'
.'port'
uses the 'port' routine from the function nls'LM'
utilises the functionnlsLM
from the packageminpack.lm
and with that the Levenberg-Marquardt algorithm.- sample_code
character (optional): sample code used for the plot and the optional output table (mtext).
- sample_ID
character (optional): additional identifier used as column header for the table output.
- LED.power
numeric (with default): LED power (max.) used for intensity ramping in mW/cm^2. Note: This value is used for the calculation of the absolute photoionisation cross section.
- LED.wavelength
numeric (with default): LED wavelength in nm used for stimulation. Note: This value is used for the calculation of the absolute photoionisation cross section.
- fit.trace
logical (with default): traces the fitting process on the terminal.
- fit.advanced
logical (with default): enables advanced fitting attempt for automatic start parameter recognition. Works only if no start parameters are provided. Note: It may take a while and it is not compatible with
fit.method = "LM"
.- fit.calcError
logical (with default): calculate 1-sigma error range of components using stats::confint.
- bg.subtraction
character (with default): specifies method for background subtraction (
polynomial
,linear
,channel
, see Details). Note: requires input forvalues.bg
.- verbose
logical (with default): terminal output with fitting results.
- plot
logical (with default): returns a plot of the fitted curves.
- plot.BG
logical (with default): returns a plot of the background values with the fit used for the background subtraction.
- ...
Further arguments that may be passed to the plot output, e.g.
xlab
,xlab
,main
,log
.
Value
Various types of plots are returned. For details see above. Furthermore an
RLum.Results
object is returned with the following structure:
@data:
.. $data
: data.frame with fitting results.. $fit
: nls (nls object).. $component_matrix
: matrix with numerical xy-values of the single fitted components with the resolution of the input data
.. $component.contribution.matrix
: list component distribution matrix
info:
.. $call
: call the original function call
Matrix structure for the distribution matrix:
Column 1 and 2: time and rev(time)
values
Additional columns are used for the components, two for each component,
containing I0 and n0. The last columns cont.
provide information on
the relative component contribution for each time interval including the row
sum for this values.
Details
Fitting function
The function for the fitting has the general form:
$$y = (exp(0.5)*Im_1*x/xm_1)*exp(-x^2/(2*xm_1^2)) + ,\ldots, + exp(0.5)*Im_i*x/xm_i)*exp(-x^2/(2*xm_i^2))$$
where \(1 < i < 8\)
This function and the equations for the conversion to b (detrapping probability) and n0 (proportional to initially trapped charge) have been taken from Kitis et al. (2008):
$$xm_i=\sqrt{max(t)/b_i}$$ $$Im_i=exp(-0.5)n0/xm_i$$
Background subtraction
Three methods for background subtraction
are provided for a given background signal (values.bg
).
polynomial
: default method. A polynomial function is fitted using glm and the resulting function is used for background subtraction: $$y = a*x^4 + b*x^3 + c*x^2 + d*x + e$$linear
: a linear function is fitted using glm and the resulting function is used for background subtraction: $$y = a*x + b$$channel
: the measured background signal is subtracted channel wise from the measured signal.
Start values
The choice of the initial parameters for the nls
-fitting is a crucial
point and the fitting procedure may mainly fail due to ill chosen start
parameters. Here, three options are provided:
(a)
If no start values (start_values
) are provided by the user, a cheap guess is made
by using the detrapping values found by Jain et al. (2003) for quartz for a
maximum of 7 components. Based on these values, the pseudo start parameters
xm
and Im
are recalculated for the given data set. In all cases, the fitting
starts with the ultra-fast component and (depending on n.components
)
steps through the following values. If no fit could be achieved, an error
plot (for plot = TRUE
) with the pseudo curve (based on the
pseudo start parameters) is provided. This may give the opportunity to
identify appropriate start parameters visually.
(b) If start values are provided, the function works like a simple nls fitting approach.
(c)
If no start parameters are provided and
the option fit.advanced = TRUE
is chosen, an advanced start parameter
estimation is applied using a stochastic attempt. Therefore, the
recalculated start parameters (a) are used to construct a normal
distribution. The start parameters are then sampled randomly from this
distribution. A maximum of 100 attempts will be made. Note: This
process may be time consuming.
Goodness of fit
The goodness of the fit is given by a pseudo-R^2 value (pseudo coefficient of determination). According to Lave (1970), the value is calculated as:
$$pseudoR^2 = 1 - RSS/TSS$$
where \(RSS = Residual~Sum~of~Squares\) and \(TSS = Total~Sum~of~Squares\)
Error of fitted component parameters
The 1-sigma error for the components is calculated using the function stats::confint. Due to considerable calculation time, this option is deactivated by default. In addition, the error for the components can be estimated by using internal R functions like summary. See the nls help page for more information.
For more details on the nonlinear regression in R, see Ritz & Streibig (2008).
Note
The pseudo-R^2 may not be the best parameter to describe the goodness
of the fit. The trade off between the n.components
and the pseudo-R^2
value currently remains unconsidered.
The function does not ensure that the fitting procedure has reached a global minimum rather than a local minimum! In any case of doubt, the use of manual start values is highly recommended.
How to cite
Kreutzer, S., 2024. fit_LMCurve(): Nonlinear Least Squares Fit for LM-OSL curves. Function version 0.3.4. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., 2024. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.26. https://r-lum.github.io/Luminescence/
References
Bulur, E., 1996. An Alternative Technique For Optically Stimulated Luminescence (OSL) Experiment. Radiation Measurements, 26, 5, 701-709.
Jain, M., Murray, A.S., Boetter-Jensen, L., 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements, 37 (4-5), 441-449.
Kitis, G. & Pagonis, V., 2008. Computerized curve deconvolution analysis for LM-OSL. Radiation Measurements, 43, 737-741.
Lave, C.A.T., 1970. The Demand for Urban Mass Transportation. The Review of Economics and Statistics, 52 (3), 320-323.
Ritz, C. & Streibig, J.C., 2008. Nonlinear Regression with R. R. Gentleman, K. Hornik, & G. Parmigiani, eds., Springer, p. 150.
Author
Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany) , RLum Developer Team
Examples
##(1) fit LM data without background subtraction
data(ExampleData.FittingLM, envir = environment())
fit_LMCurve(values = values.curve, n.components = 3, log = "x")
#>
#> [fit_LMCurve()]
#>
#> Fitting was done using a 3-component function:
#>
#> xm1 xm2 xm3 Im1 Im2 Im3
#> 56.18298 1449.72480 7878.26800 202.76619 367.30236 639.21452
#>
#> (equation used for fitting according to Kitis & Pagonis, 2008)
#> ------------------------------------------------------------------------------
#> (1) Corresponding values according to the equation in Bulur, 1996 for b and n0:
#>
#> b1 = 1.267216e+00 +/- NA
#> n01 = 1.878225e+04 +/- NA
#>
#> b2 = 1.903219e-03 +/- NA
#> n02 = 8.779232e+05 +/- NA
#>
#> b3 = 6.444637e-05 +/- NA
#> n03 = 8.302801e+06 +/- NA
#>
#> cs from component.1 = 1.488e-17 cm^2 >> relative: 1
#> cs from component.2 = 2.234e-20 cm^2 >> relative: 0.0015
#> cs from component.3 = 7.566e-22 cm^2 >> relative: 1e-04
#>
#> (stimulation intensity value used for calculation: 8.517726e+16 1/s 1/cm^2)
#> (errors quoted as 1-sigma uncertainties)
#> ------------------------------------------------------------------------------
#>
#> pseudo-R^2 = 0.9557
##(2) fit LM data with background subtraction and export as JPEG
## -alter file path for your preferred system
##jpeg(file = "~/Desktop/Fit_Output\%03d.jpg", quality = 100,
## height = 3000, width = 3000, res = 300)
data(ExampleData.FittingLM, envir = environment())
fit_LMCurve(values = values.curve, values.bg = values.curveBG,
n.components = 2, log = "x", plot.BG = TRUE)
#> [fit_LMCurve] >> Background subtracted (method="polynomial")!
#>
#> [fit_LMCurve()]
#>
#> Fitting was done using a 2-component function:
#>
#> xm1 xm2 Im1 Im2
#> 53.32087 1587.57202 176.74382 406.89925
#>
#> (equation used for fitting according to Kitis & Pagonis, 2008)
#> ------------------------------------------------------------------------------
#> (1) Corresponding values according to the equation in Bulur, 1996 for b and n0:
#>
#> b1 = 1.406908e+00 +/- NA
#> n01 = 1.553777e+04 +/- NA
#>
#> b2 = 1.587059e-03 +/- NA
#> n02 = 1.065044e+06 +/- NA
#>
#> cs from component.1 = 1.652e-17 cm^2 >> relative: 1
#> cs from component.2 = 1.863e-20 cm^2 >> relative: 0.0011
#>
#> (stimulation intensity value used for calculation: 8.517726e+16 1/s 1/cm^2)
#> (errors quoted as 1-sigma uncertainties)
#> ------------------------------------------------------------------------------
#>
#> pseudo-R^2 = 0.9417
##dev.off()
##(3) fit LM data with manual start parameters
data(ExampleData.FittingLM, envir = environment())
fit_LMCurve(values = values.curve,
values.bg = values.curveBG,
n.components = 3,
log = "x",
start_values = data.frame(Im = c(170,25,400), xm = c(56,200,1500)))
#> [fit_LMCurve] >> Background subtracted (method="polynomial")!
#>
#> [fit_LMCurve()]
#>
#> Fitting was done using a 3-component function:
#>
#> xm1 xm2 xm3 Im1 Im2 Im3
#> 49.00634 204.39749 1591.66438 169.43979 23.00769 405.46174
#>
#> (equation used for fitting according to Kitis & Pagonis, 2008)
#> ------------------------------------------------------------------------------
#> (1) Corresponding values according to the equation in Bulur, 1996 for b and n0:
#>
#> b1 = 1.665542e+00 +/- NA
#> n01 = 1.369036e+04 +/- NA
#>
#> b2 = 9.574341e-02 +/- NA
#> n02 = 7.753465e+03 +/- NA
#>
#> b3 = 1.578909e-03 +/- NA
#> n03 = 1.064017e+06 +/- NA
#>
#> cs from component.1 = 1.955e-17 cm^2 >> relative: 1
#> cs from component.2 = 1.124e-18 cm^2 >> relative: 0.0575
#> cs from component.3 = 1.854e-20 cm^2 >> relative: 9e-04
#>
#> (stimulation intensity value used for calculation: 8.517726e+16 1/s 1/cm^2)
#> (errors quoted as 1-sigma uncertainties)
#> ------------------------------------------------------------------------------
#>
#> pseudo-R^2 = 0.9437